If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-9x-193=0
a = 2; b = -9; c = -193;
Δ = b2-4ac
Δ = -92-4·2·(-193)
Δ = 1625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1625}=\sqrt{25*65}=\sqrt{25}*\sqrt{65}=5\sqrt{65}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-5\sqrt{65}}{2*2}=\frac{9-5\sqrt{65}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+5\sqrt{65}}{2*2}=\frac{9+5\sqrt{65}}{4} $
| x+3x=4x+1 | | 6x-3=91.50 | | 3/5+9+1/5n=-7 | | 9j=657 | | 4r×6=7 | | -30=j=50 | | 3x2(x-3)=91.50 | | 6x+32=16x-62 | | 9x^2+18x+6=0 | | 2y-(-6/1/2)=11/3/4 | | 5^3x+4=25 | | -29=3(x+7)-8x | | 3x+9-8x+6=2/3 | | X-3/4=-3x | | 36-2x=18+7x | | 6n=57 | | (6y+8)4=72 | | 6.5y-19=2.5(y-5) | | 2y-(-61/2)=113/4 | | 3x+1=6+2x | | x+9x=210 | | 8r-7=5r+2-3r | | 8=4.2r-7+7.8r | | 22x=x+64 | | 12=-8a+3a | | -5(2w=1)=25 | | -14b–10=-13b–9 | | 0.2X+x=1.04 | | 1/6p+5/2+11/3=41/3 | | 5+2x10=70 | | 45=2x+x | | 20-13x=15.71 |